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Abstract
We show that Landau-level broadening in alloys occurs naturally as a
consequence of random variations in the local quasiparticle density, without
the need to consider a relaxation time. This approach predicts Lorentzian-
broadened Landau levels similar to those derived by Dingle using the relaxation-
time approximation. However, rather than being determined by a finite
relaxation time τ , the Landau-level widths instead depend directly on the rate
at which the de Haas–van Alphen frequency changes with alloy composition.
The results are in good agreement with recent data from three very different
alloy systems.

The relaxation-time approximation (RTA), in which quasiparticles scatter in random events
at a characteristic rate τ−1, has proved invaluable in understanding the electrical resistivity
and thermal conductivity of metals [1]. It has also been used to treat the de Haas–van Alphen
(dHvA) effect, i.e. magnetic quantum oscillations of the magnetization [2, 3]. Dingle showed
that the Lorentzian broadening of Landau levels in metals, observed using the dHvA, is
qualitatively explained by the RTA for elastic scattering [4]. The predicted exponential
damping of quantum oscillations due to impurities, with a characteristic scaling temperature
known as the Dingle temperature TD = h̄/2πkBτ , was subsequently verified experimentally
for the vast majority of known metals [2, 3].

In spite of this apparent success, the RTA proves inadequate when considering thermo-
dynamic functions of state, such as the electronic specific heat γ T or magnetic susceptibility
χ , because of the formation of bound states associated with impurities [5]. More generally,
impurities, surfaces or defects of any kind will modify the lattice periodicity and the local
potential of the crystal, so the quasiparticle wavefunctions (i.e. the eigenstates of a perfect,
periodic, infinite crystal [1]) will no longer be eigenstates of the modified crystal [1,6,7]1. The
assumption that the consequent alteration of, for example, the Landau-level structure can be
parametrized merely by a relaxation rate τ−1 [4] seems to be a considerable oversimplification.

1 The CPA (coherent potential approximation—a mean-field-theory approach) [6, 7] is often used to calculate the
‘smearing’ (in energy and wave-vector, k) of the electronic states in metallic solid solutions.
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A deeper problem arises in the alloy Hs1−xDox , where Hs represents the host material
and Do the dopant impurity. When x becomes ∼0.5, one should be concerned as to how
far the distinction between ‘host’ and ‘dopant’ can be stretched. As numerous experiments
have shown (see e.g. references [8–12]), the quasiparticle wavefunctions are no longer those
of the host material, weakly perturbed by enhanced impurity scattering. By contrast, Dingle’s
model only considers the statistical broadening of Landau levels, without considering how the
underlying band structure is being modified by the alloying [4].

In view of the difficulty in separating effects due to the variation of the band structure
with x and effects due to the changes in the actual quasiparticle lifetime, we have chosen to
abandon the RTA and instead adopt a semi-empirical approach based on statistical variations
of the local quasiparticle density in an alloy. The essential advantage of this approach is
that the sensitivity of the electronic structure to x is considered as the starting point. Our
model is therefore related to the work of Woltjer [13]. Using a spatially varying electron
density, Woltjer was able to provide convincing simulations of Shubnikov–de Haas oscillations
and the quantum Hall effect in two-dimensional semiconductor systems without the need to
invoke localization [13]2. However, in contrast to Woltjer’s work, which involved numerical
simulations of experimental data, in the current letter we provide an analytical solution which
predicts the damping of dHvA oscillations.

Our model is applicable to systems for which the lattice parameters are only weakly
dependent on x and for dHvA oscillations arising from circular Fermi-surface cross-sections3.
Encouragingly, it predicts Lorentzian-broadened Landau levels similar to those described by
Dingle [4]4. However, rather than being determined by a finite relaxation time τ , the Landau-
level widths instead depend directly on the rate at which the dHvA frequency F(x) changes
with x, enabling estimates to be made that compare very favourably with experiment.

The starting point of the model is the fact that x, the local concentration of Do in Hs,
is subject to statistical variations about the mean value x̄. This will lead to a spread of
Fermi-surface cross-sections A(x) about the mean A(x̄). As the dHvA frequency is given
by F = (h̄/2πe)A [2], the variation in A in turn leads to a spread of dHvA frequencies F(x)
and to phase-smearing effects [2, 4]. In this letter we restrict ourselves to simple circular
Fermi-surface cross-sections of k-space area A that are easy to relate to the local quasiparticle
concentration N(x) [1]. However, rather than assuming that N(x̄) is linearly dependent on x̄,
we choose a semi-empirical approach whereby A′(x̄) and F ′(x̄), the derivatives respectively
of the mean cross-section A(x̄) and mean dHvA frequency F(x̄) with respect to x̄, are those
obtained from experiment. The dHvA frequency F(x) corresponding to a particular value of
x can then be obtained from

F(x) ≈ F(x̄) + [x − x̄]F ′(x̄). (1)

Given the finite separation, a, between ions5, the average number of Hs and Do ions
encountered in a quasiparticle path comprising p orbits of the circular cyclotron trajectory is
determined by binomial statistics; the path will be of length 2πplc(x̄) = 2πp

√
2h̄F (x̄)/eB2.

For such a path, m ≈ xn of these will be of the Do type and n−m ≈ [1 − x]n of these will be

2 By analogy with the conclusions of the present letter, Woltjer’s work might also explain why Landau levels
appear to have Lorentzian line shapes in two-dimensional systems [14] for which models based on the RTA predict
otherwise [15, 16].
3 It remains to be tested whether our approach can adequately accommodate large lattice mismatches between Hs
and Do.
4 In this context, it is interesting to note that the CPA predicts Lorentzian broadening of the so-called ‘Bloch spectral
function’ in the presence of substitutional disorder [7].
5 For a simple cubic system, a is the lattice parameter, while more generally, a = N1/3, where N is the total ion
concentration inclusive of both Hs and Do ions.
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of the Hs type. The probability that m of these ions are of type Do, corresponding to a local
dopant concentration x = m/n (and local dHvA frequency F(x)), is therefore

p(m, n) = x̄m[1 − x̄]n−mn!

m![n−m]!
. (2)

Under standard experimental conditions, n will always be a large number for metals. Taking
the ‘necks’ of Au as one example of a Fermi-surface cross-section (FN ≈ 1530 T) that is not
especially large [3], a ∼ 2.6 Å while lc ∼ 1400 Å in a magnetic field of B ∼ 10 T, implying
that n ∼ 540. Clearly, it would be impractical to work with such a large number of terms
in calculations. It is well known, however, that the skew factor η = 1/

√
6x̄[1 − x̄]n for the

binomial distribution vanishes for large n, causing the binomial distribution to become well
approximated by the normal distribution [17]. In implementing this approximation, the mean
becomes µm = nx̄ and the variance becomes σ 2

m = nx̄[1 − x̄]. Following the established idea
that a variation in F results in a ‘phase smearing’ which produces a damping of the dHvA
effect [2, 4] the damping factor becomes the result of the Fourier transformation:

Ri ≈
∫ +∞

−∞

n

σm
exp

(−[x − x̄]2n2

2σ 2
m

)
cos

(
2πp[x − x̄]F ′(x̄)

B

)
dx. (3)

Making the substitution φ ≡ 2πp[x − x̄]F ′(x̄)/B, and performing the integration in the
φ-domain, we obtain

Ri ≈
∫ +∞

−∞

1

σφ
exp

(−φ2

2σ 2
φ

)
cos (φ) dφ ≈ exp

(−σ 2
φ

2

)
(4)

where

σ 2
φ = 2πpx̄[1 − x̄]F ′(x̄)2a

B

√
e

2h̄F
(5)

is now the phase variance.
The expected symmetry between Hs and Do is immediately seen in the presence of terms

in both [1 − x̄] and x̄ in equation (5), enabling this model to be applied across an entire alloy
series 0 < x < 1. More satisfyingly, since the exponent is linear in both the harmonic index p
and 1/B, the functional form of Ri is exactly that obtained by Dingle using the RTA [4]. After
inverse Fourier transformation and the parabolic band substitution F = m∗E/h̄e, a Lorentzian
Landau-level line shape

f (E) =  

π [E2 +  2]
(6)

is obtained, with the level width  given by

 = x̄[1 − x̄]F ′(x̄)2a
m∗

√
h̄e3

8F
. (7)

This latter result implies that a Lorentzian broadening of the Landau levels results naturally
from frequency-smearing effects caused by the substitution of dopants without needing to
consider the concept of a relaxation time.

We now consider whether this model can account for a significant amount of the
Landau-level broadening observed in well known alloy systems. Three experiments involving
approximately circular Fermi-surface cross-sections are considered.

Ag impurities in Au. Dilute alloys of the form AgxAu1−x provide a useful test case, since
the lattice parameters of Au and Ag are very similar and the neck orbit, giving rise to a dHvA
frequency of FN ≈ 1530 T in Au, is thought to be very nearly circular [3]. To facilitate a
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comparison with existing experimental data, the results of our model are stated in terms of an
effective Dingle temperature

TD = x̄[1 − x̄]F ′(x̄)2a
πkBm∗

√
h̄e3

2F
. (8)

On inserting the appropriate values for Ag0.01Au0.99, of F ′
N ∼ 650 T, m∗ ∼ 0.29me and

a ∼ 2.7 Å for the face-centred cubic lattice [1–3], we obtain TD ≈ 1.1 K for each per cent
of Ag, which compares favourably with the experimentally obtained value of 0.8 K for each
per cent of Ag [8, 11]. Thus our model for Landau-level broadening appears to be able to
predict reasonable values for the observed TD for AgxAu1−x .

Kondo alloys. Our model can also be applied to the CexLa1−xB6 series. Because this is a
Kondo system in which the effective mass varies with the magnetic field, it is more meaningful
to present the results in terms of a mean free path, since this quantity is not renormalized by the
interactions that give rise to Kondo behaviour [18]. In having abandoned the RTA, however,
we have in effect also abandoned the concept of a mean free path. Nevertheless, by making a
comparison with the formulae of Dingle, we can define an effective mean free path,

leff = 2h̄F

ex̄[1 − x̄]F ′(x̄)2a
. (9)

On inserting the appropriate values of Fα,3 ∼ 7970 T, F ′
α,3 ∼ 550 T and a ∼ 4.0 Å, for the

worst-case alloy x = 0.5 [12], we obtain leff ≈ 350 nm, which is within experimental error
of the maximum value obtained experimentally [12]. Thus, this model can explain why the
broadening of the Landau levels in the CexLa1−xB6 intermetallic compounds was observed to
be unexpectedly low [12].

A doped insulator. Finally, it is interesting to consider the case of a doped insulator, to
investigate whether one should expect to observe the dHvA effect in such systems. Low-
density, weakly ferromagnetic electron-gas systems, which have been of recent interest,
certainly fall into the category, and dHvA oscillations have been observed [10]. The simplest
model is that of a variable density, N , where N(x) = xN ′. On deriving F(x) and F ′(x) for a
spherical Fermi surface, we obtain

−σ 2
φ

2
= p

24
[1 − x]

h̄a

eB
N ′. (10)

Interestingly, at very low concentrations, x → 0, the extent to which the quantum oscillations
are damped does not depend on x. Since no estimates of TD or leff have been published [10],
the best we can do is estimate the lowest field at which we should expect quantum oscillations
to be observed. According to Dingle [4], the threshold field is given approximately by the
inequality ωcτ � 1. The equivalent inequality according to our model is φ2 � 2π . Upon
substituting a ∼ 4.0 Å and N ′ ∼ 5 × 1027 m−3 [10], we obtain B � 9 T. This is in very good
agreement with experiment; Goodrich [19] reports that dHvA oscillations are only observed
at fields of 10 T and greater.

In summary, we have shown that Lorenzian broadening of Landau levels in alloys can
be derived statistically by considering a distribution of Fermi-surface cross-sections, without
invoking the relaxation-time concept. We have considered three alloy systems, and shown that
the extent to which the Landau levels are broadened, or the extent to which the quantum
oscillations are damped, compares favourably with experiment. In view of the current
experimental interest in alloy systems, we hope that this letter stimulates further consideration
of, for example, more general Fermi-surface shapes and the effect of lattice mismatch between
host and impurity.
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